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SUMMARY 

It is shown that the eddy viscosity profile in a quasi-three-dimensional numerical tidal and storm surge 
model can be estimated by assimilation of velocity data from one or more current meters located on the 
same vertical line. The computational model used is a simplified version of the so-called vertical/horizontal 
splitting algorithm proposed by Lardner and Cekirge. We have estimated eddy viscosity both as a constant 
and as a variable parameter. The numerical scheme consists of a two-level leapfrog method to solve the 
depth-averaged equations and a generalized Crank-Nicolson scheme to compute the vertical profile of the 
velocity field. The cost functional in the adjoint scheme consists of two terms. The first term is a certain 
norm of the difference between computed and observed velocity data and the second term measures the 
total variation in the eddy viscosity function. The latter term is not needed when the data are exact for 
the model but is necessary to smooth out the instabilities associated with ‘noisy’ data. It is shown that a 
satisfactory minimization can be accomplished using either the Broyden-Fletcher-GoldfarbShanno 
(BFGS) quasi-Newton algorithm or Nash’s truncated Newton algorithm. Very effective estimation of eddy 
viscosity profiles is shown to be achieved even when the amount of data is quite small. 
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1. INTRODUCTION 

Numerical modelling has now become a major tool for the study of ocean dynamics, both in 
its practical aspects, such as computing the flows due to tides or storm surges, and its more 
theoretical and fundamental aspects. The earliest numerical models were based on the two- 
dimensional depth-averaged shallow water equations, which yield values of the surface elevation 
and depth-averaged velocity components, but these have been largely superseded in the last 
two decades by models using the full three-dimensional equations. Descriptions of several such 
models are contained in the collections edited by Heaps’ and Nihoul and Jamart.’ 

Numerical models of flows in lakes, seas and oceans involve certain parameters, e.g. bottom 
friction coefficients, eddy viscosities and water depth, and certain boundary values, e.g. surface 
elevations on open boundaries, whose values may not be very well known. The numerical models 
must agree with measurements, allowing for observational errors, and the procedure generally 
adopted is to choose the parameters so as to minimize some cost function that measures the 
misfit of the computed and measured values. In such model fitting, the gradient of the cost 
function with respect to the parameters is needed for the optimization algorithm used in 
computing the input parameters that give the best fit. 
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Besides this, a related problem is the study of the sensitivity of a model’s outputs with respect 
to its input parameters and this again requires computation of the gradients of the outputs with 
respect to the inputs. 

The variational method, first proposed by Sasaki3a4 and Marchuk,s provides a powerful 
technique for computing such gradients which is especially useful when the number of input 
parameters is large. Following this method, construction of the gradient of a cost function with 
respect to the model parameters leads to an adjoint boundary value problem that must be solved 
backwards in time. Having determined the gradient, the minimization can be performed using 
any of a number of numerical optimization algorithms. In previous work6,’ we have used both 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm as contained in the 
CONMIN subroutine of Shanno and Phua’ and Nash’s truncated Newton a l g ~ r i t h m . ~  Descrip- 
tions of these two methods are given by Navon and Legler” and Nash and Nocedal.” We 
shall use them again here. 

In recent years variational data assimilation has become widely used in numerical weather 
prediction (see e.g. reviews by Lorenc,12 Navon13 and LeDimet and NavonI4) and has also been 
used for petroleum reservoir simulation by Chavent et a1.” and groundwater flow by Carerra 
and Neumann.I6 

In the field of oceanography the earliest applications were made by Bennett and McIntosh 
and Prevost and Salmon,” who applied the weak constraint formalism of Sasaki4 (in which the 
model equations are incorporated into the cost function and so are satisfied only in a 
least-squares sense) to a tidal flow problem and a geostrophic flow problem respectively. 
Subsequent applications have employed the strong constraint formalism in which the model 
equations are imposed as exact constraints on the minimization; a review of this approach and 
an application to a model of wind-driven equatorial circulation has been given by Thacker and 
Long.” Subsequently this formalism has been used by Panchang and O’Brien’’ to determine 
the bottom friction coefficient in a problem of flow in a channel, using some earlier experimental 
results. Tziperman and Thacker’’ have used it to estimate the friction and wind forcing in ocean 
circulation models. Smedstad22 and Smedstad and O’BrienZ3 have extended this approach and 
used it to determine the effective phase speed in a model of the equatorial Pacific Ocean based 
on observations of sea level. Das and Lardner6 have extended the work of Panchang and O’Brien 
to estimate the position-dependent drag and depth in a sectionally integrated model of flow in 
a channel by assimilation of periodic tidal data and have compared several minimization 
algorithms. Lardner24 has used similar variational techniques to estimate the open boundary 
conditions in a two-dimensional tidal model and Das and Lardner7 have extended their earlier 
work to the estimation of the parameters for the same two-dimensional model. This work has 
been applied by Lardner et aL2’ to obtain significant improvements in a model of tidal flow in 
the Arabian Gulf. 

The first application of this approach to estimate viscosity was by Yu and O’Brien,26 who 
estimated the eddy viscosity and surface drag coefficient in a horizontally uniform model of the 
ocean from measured velocities of a wind-driven flow. This work has recently been extended by 
Richardson and P a n ~ h a n g . ~ ~  The main aim of the present paper is to incorporate such techniques 
into a horizontally non-uniform model of tidal and wind-driven flow, thus providing a framework 
for estimating eddy viscosity from data in near-coastal regions. The data in this case consist of 
values of water velocity obtained from current meters placed within the water body and the 
cost function is taken to consist basically of a norm of the difference between the computed and 
measured velocity values. 

The adjoint methods and, in general, inverse modelling techniques are ill-posed problems. It 
has been found by several authors, e.g. Yeh,28 Smedstad and 0Brie11,~~ Das and Lardner6-’ 
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and Lardner et al.,” that if one is estimating parameters which are distributed in the space-time 
domain, the study is fraught with instability and non-uniqueness. We shall show that while the 
proposed method of estimating the viscosity function works well with exact data, such difficulties 
arise as soon as errors are introduced into the data. A remedy shown to be effective by Das and 
Lardner6q7 was to increase the number of data stations, but this is not always a viable option. 
Richardson and PanchangZ7 have proposed the idea of introducing a penalty term in the cost 
function which tends to make the parameter profiles smoothly varying. We have extended and 
applied this idea and found that it does provide a satisfactory way of stabilizing the estimates 
while leaving their essential structure intact. 

In Section 2 we describe the three-dimensional numerical model that we have used. In Section 
3 the corresponding discrete adjoint equations are derived and the parameter equations are set 
up. In Section 4 the results of several numerical tests are given and finally in Section 5 the 
results and conclusions are summarized. 

2. THE NUMERICAL MODEL 

2.1. The physical model 

We use a system of co-ordinates with the z-axis pointing vertically upwards and the xy-plane 
occupying the undisturbed position of the water surface. The position of the bottom is taken 
to be z = - h(x, y )  while the upper surface at time t is z = ((x, y, t). The components of fluid 
velocity in the two horizontal co-ordinate directions are denoted by u(x, y, z, t )  and u(x, y ,  z, t ) .  

We consider the fluid to be incompressible and of uniform density, make the usual hydrostatic 
approximation to the vertical momentum equation, neglect horizontal shear stresses and use an 
eddy viscosity model for the vertical shears. These various approximations are usually valid and 
are commonly made in numerical tidal models. In the model we shall use we also neglect the 
advective terms in the momentum equations. These terms are generally small away from the 
coasts and regions of restricted flow. The continuity equation and the horizontal momentum 
equations then take the approximate forms 

u, - (Nu,), - fu + S L  = 0, 

where subscripts x, y, z and t are used to denote the corresponding partial derivatives and p 
and q are the volume fluxes defined by 

c 
p = s‘ u dz, q = (-, u dz. 

- h  
(4) 

In addition, g denotes the acceleration due to gravity, f = 252 sin 4 is the Coriolis parameter 
(where 4 is the latitude and 52 the angular velocity of the earth’s rotation) and N is the vertical 
eddy viscosity. In terms of p and q we define the depth-averaged components of velocity, ii and 
0, as 

where H = h + r is the total water depth. 
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There are also traction boundary conditions on the top and bottom surfaces of the water 
column, 

pN(u,, u,) = (W, W )  on z = 5, (6) 

pN(u,, u,) = ( T ( ~ ~ ) ,  on z = -h ,  (7) 

where p is the water density, dSx) and 
caused by the wind and dbX) and t(by) are the components of bottom friction stress. 

are the components of shear stress on the water surface 

The surface stress is assumed to be given by 

(F, +)) = yp,J( w: + W,2)(WX, WJ,  (8) 

where Wx and W, are the components of the wind velocity, pa is the air density and y is a 
dimensionless friction coefficient. We shall return to the bottom friction later. 

The depth-averaged momentum equations are obtained by integrating equations (2) and (3) 
over the water column from z = - h  to 6. They take the form 

pt - f i  + g Hc, + p - ’ ( T ( ~ ~ )  - T”~)) = 0, 

qr + fp -k gHc ,  + p -  ‘(dby) - T(*’)) = 0. 

(9) 

(10) 

For the bottom friction, turbulent boundary layer models of the near-bottom flow indicate 
that it is physically realistic to use a quadratic dependence of bottom friction on the bottom 
velocity. We shall, however, make the approximation of using the depth-averaged velocity rather 
than the bottom velocity in this expression for the bottom friction. We therefore assume that 

( p X )  7 $v) 1 = “PJ(U2 + fi2)(% 4 = KPJ(P2 + q 2 ) ( p ,  q), 

where K is a dimensionless drag coefficient and K = ~ h - ~ .  This approximation is generally made 
in two-dimensional hydrodynamical models. It is reasonably good for tidal flows, where in most 
situations the water velocity is almost uniform through the water column, but is less good for 
wind-driven flows. 

With this approximation, equations (l), (9) and (10) form a closed system (the shallow water 
equations) that can be solved independently for 5, p and 4. Having solved this system, the solution 
can be used in the momentum equations (2) and (3) and boundary tractions (11) to determine 
the vertical structure of the current. This type of model is sometimes called a two-and-a-half- 
dimensional model. Its advantage from the point of view of estimating eddy viscosity is that 
eddy viscosity does not enter the shallow water system and therefore we do not require the 
adjoint of this system in order to estimate this parameter. This reduces the storage and CPU 
requirements of the computation by two or three orders of magnitude. 

In addition to the differential equations, conditions are required on the lateral boundaries. 
On coastal boundaries the normal component of the mass flux vector is taken to be zero: 
( p ,  q) * n = 0, where n is the unit outward normal to the region. On the open part of the boundary, 
where the water body adjoins the open ocean, we use the most common type of boundary 
condition, namely the surface elevation c is assumed specified. 

(1 1) 

2.2. Finite difference approximations 

The numerical scheme used to solve the shallow water equations (l), (9) and (10) is based on 
a leapfrog method with staggered grids in both space and time. An Arakawa C-grid has been 
used in the spatial direction and in the time direction the variables c and ( p ,  q) are taken at 
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alternating half-steps. Flat initial conditions are taken, i.e. C, p and q are initially zero at all grid 
points. The details of the numerical scheme are given in Reference 7. 

At each time step the shallow water equations are first solved, then equations (2) and (3) are 
stepped forward. For this second stage we use a modification of the generalized Crank-Nicolson 
algorithm described by Lardner and Ceki~-ge.’~ A uniform grid is introduced for the vertical 
direction, the bottom z = - h  being taken to correspond to j = 3, while the free surface z = C is 
taken to be at j = J + f. The grid spacing is thus k = H/J. The finite difference approximations 
to equations (2) and (3), for the space-time grid point (iJ) corresponding to the ith time step 
and the j th vertical grid level, are then 

= - (gHCy)i + 1 / 2 .  (13) 
Here Nj+l/2 denotes the eddy viscosity midway between the jth and ( j  + 1)th grid points, 
assumed independent of time, and ui, and ui, are the velocity components at the jth grid point 
and the ith time step. The implicitness parameter a is required for stability: a = 0 would be a 
fully explicit scheme and CI = 0.5 corresponds to the Crank-Nicolson scheme. Lardner and 
Cekirge29 showed that, ignoring the boundary conditions, it is necessary and sufficient for 
numerical stability to take a 2 0.5. 

The discrete approximations to the boundary conditions (6) and (7) at each time step i are 
taken as 

(14a,b) 

where N, = NJ+ and Nb = N,,z are the eddy viscosities at the surface and bottom respectively. 
Equations (12H15) now form a tridiagonal system that enables the updated velocities at  step 
i + 1 to be readily determined from their values at step i. Flat initial values are assumed, i.e. 
uo, = uo, = 0 for all j. 

3. THE ADJOINT NUMERICAL MODEL 

3.1. Minimum principle 

We suppose that current meters labelled by d = 1,2, . . . , D are placed at different vertical 
levels at a certain point (x, ,y,)  and values of the velocities are observed for time steps 
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i = I + 1, . . . , P. The start-up interval consisting of steps j = 1, 2, . . . , I is imposed to allow the 
transients arising from the initial conditions to become sufficiently small, so that the computed 
solution should agree with the observed values to within some tolerance in the interval 
I + 1 I j I P. We denote the observed velocities by { Ug, Vg} at step i. 

The meter stations may coincide with grid levels, but more generally we suppose that the 
corresponding computed values of velocity at station d are Zj Bj,dui,j and Zj Bj,dvi,j, where Bj,d 
are appropriate interpolation coefficients and ui, and ui, are computed by solving equations 
(12H15) at the point ( x ~ ,  yD).  The discrepancy in the computed value at meter d and step i is then 

L\uS Bj,dUi,j - ug, AvL c Bj,dVi,j - vg. (16) 
j j 

We suppose that the parameters in the model must be chosen so as to minimize the objective 
function 

D P J -  1 

= f 1 K d  1 [(Aug)2 + (Avg)21 + fb c “j+1/2 - Nj-1/2)2 
d = l  i = l + l  j=2 

+ fB”(N3/2 - N1/2)2 + “ J +  112 - N J -  1/2)219 (17) 

where the quantities K ,  are the respective weights given to the observational discrepancies at  
the different data stations. The last two terms in (17) are included to penalize large fluctuations 
in the estimated eddy viscosity from one level to another and are analogous to similar continuous 
penalty terms introduced by Richardson and P a n ~ h a n g . ~ ~  They are not always needed, as we 
shall see, but there are situations in which they definitely are needed if the parameter estimates 
are to be acceptable. The reason for separating the last two terms with a different coefficient 
will become apparent below. 

3.2. The adjoint equations 

we have the following expression for the first variation of F: 
Introducing Lagrange multipliers, li+ pi+ qi ,  q:, ti and E ;  for the constraints (12H15), 

n P /  \ 

where 412) means the variation of the left side of equation (12) and so on. The right sides of 
these equations are independent of viscosity and so do not contribute. The sums in the last two 
lines of (1  8) are transformed using summation-by-parts formulae. In order to remove certain 
terms, we choose 
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(19) 
' l i  = k-'[aAi.J+l + (l ~ ' ~ A i + l ~ J + l ~ ~  'l: = k - ' [ ' ~ i . J + l  + (l - a) / i i+ l . J+ l l ,  

E~ = -k-'[aAi,, + (1 - a)Ai+l.l], E :=k- 'CUpi ,1  + ( I  -a)~i+l .1I  

and also make the Lagrange multipliers satisfy the boundary and final conditions 

Pi,J = k . J + l ,  p. = p. '6,J = l i . J +  1 9  1.0 1. 1, 

A P + l . j = O ,  ~ ~ + l . j = o .  

A. = 1. 1.0 1 . 1 9  

Then equation (18) can be written in the form 

where 

To remove the first terms from equation (22), we require that Xi,j = 0 and x,j = 0. Together 
with the boundary and final conditions (20) and (21), these two equations constitute the adjoint 
boundary value problem. They can be solved for Ai, and pi, by stepping backwards in time. 
At each time step the equations Xi,j = 0 and k;,j = 0 provide a tridiagonal system that can be 
solved by almost the same procedure as that for the forward problem. 
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Having determined Ai, and pi, j ,  the remaining terms in (22) provide the components of the 
gradient of F with respect to the parameters: 

In particular, two of these components are 

Since these two gradients are independent of the dynamical variables u, u, A and p, it follows 
that the computed velocities are actually independent of the surface and bottom values of eddy 
viscosity, N ,  = N J + 1 / 2  and N ,  = N l / 2 .  It is immaterial what values are given these two 
parameters. If we choose 8’ > 0, it is clear from (27) that the minimization will automatically 
make N l 1 2  = N 3 / ,  and N J + l , 2  = N J - l / 2 .  However, we prefer to take = 0 and obtain the 
estimates of N ,  and N ,  by linear extrapolation from the two nearest grid points in order to get 
a smoother eddy viscosity profile. This reduces the dimension of the parameter space to J - 1 
and the remaining gradient components are 

Having determined the gradient of F ,  the minimization can proceed via one of several 
optimization algorithms. Several of these were examined earlier by Das and Lardner.6*7 Here 
we have used the BFGS algorithm as contained in the CONMIN subroutine of Shanno and 
Phuaa and the truncated Newton algorithm of Nash.’ 

4. NUMERICAL RESULTS 

4.1. The test model 

The region used for testing the algorithm consists of a rectangular bay with an open boundary 
occupying two sides. The region covers the grid points for which 2 I m, n I 16, with closed 
boundaries along the sides m = 1.5 and n = 1.5 and open boundaries along the sides m = 16 
and n = 16. The grid sizes are Ax = Ay = 40,000 m and the Coriolis parameter is f = 
1.22 x The depth h and bottom friction coefficient K were taken to increase linearly with 
rn + n from 37 m and 0.11 x lo-’  m-’ at the closed corner (2,2) to 93 m and 0.39 x lo-’  rn-’ 
at the open corner (16J6). 

Two constituents of the tidal driving force were incorporated via the following prescribed 
values of water height on the open boundary: 

c(m,16) = sin(wt) + [(m - 2)/14] sin(2ot) (2 I m I 16), 

c(16,n) = [ ( n  - 2)/14] sin(ot) + sin(2wt) (2 I n I 16), 

where w = 2n/T with period T = 12 h. In most of the tests a surface wind shear stress was 
assumed to be acting in the y-direction, varying sinusoidally with period 72 h and maximum 
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amplitude equal to 1.5 N m-’. The time step for the computation was 360 s, which is small 
enough to maintain stability as well as to provide a reasonably accurate solution. 

It was assumed that current meters are located on a vertical line at the grid point (10, lo), at 
which point the depth is 69m. Synthetic data from these meters were computed using the 
algorithm described in Section 2. The simulation was run for a total period of 96 h, with 
computed velocities from the final 12 h being compared with these ‘observed’ values for the 
parameter estimations. 

The true eddy viscosity was assumed to have a trapezoidal form as shown in Figure 1, with 
various combinations of the surface, middle and bottom values N , ,  N ,  and N ,  being used. The 
thicknesses of the surface and bottom layers, dl and d , ,  were taken as fixed at 20 m. The number 
of vertical levels inside the water column was taken as J = 10 or 15 and the values of eddy 
viscosity were estimated at the half-integer points (see Figure 1 for the case J = lo), so the 
dimension of the parameter space was nine or 14 in the two cases. 

Numerical minimization was carried out using the subroutine CONMIN8 or Nash’s truncated 
Newton subr~u t ine .~  Most of the results presented relate to the former of these two. For this 
subroutine it is necessary to specify a tolerance, which is the magnitude of the gradient of the 
objective function at which the subroutine terminates. It was found that some experimentation 
was needed to find the best value of this quantity in each case tested, as will be seen from the 
results below. 

4.2. Test of the adjoint 

parameter space and U any unit vector, the quantity 
Assuming that the objective function F is twice-differentiable, then, if N is any point in the 

O(a) = [F(N + aU) - F(N)]/(ctU - VF) - 1 

is of order a as a + 0. In order to test that the computation of the gradient via the adjoint 
system has been programmed correctly, the values of @(a) have been computed for a given 
N and a series of decreasing values of a and for U in each of the co-ordinate directions. 

Figure 1. The assumed form of the eddy viscosity profile. Also shown are the vertical grid points in the case J = 10 
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Results for the first direction are shown in Table I:  (D decreases with a until the limit of machine 
accuracy is exceeded. Similar results were found for all the other directions. 

4.3. Basic parameter estimation tests 

In these tests it was assumed that three current meters are located at the levels j = 2, 5 and 
8 and data from all 120 steps were assimilated. Three eddy viscosity profiles were tested: (i) 
constant viscosity, N ,  = N ,  = N ,  = 0.065; (ii) N ,  = N ,  = 0.02 and N ,  = 0.065; (iii) N ,  = 0.1. 
N ,  = 0.03 and N ,  = 0.01. 

In case (i), with a starting guess N = 0.05 at all levels, convergence occurs after 73 iterations 
when the tolerance is set at lo-' and the estimated parameters are accurate to four figures. 
With a tolerance of lo-' convergence occurs in 51 iterations but with errors of up to 2% in 
the estimated values. 

More detailed results for case (ii) are given in Table 11, where the final estimated values of 
the parameters and the objective function are given for three values of the tolerance. The last 
column shows the true values of the parameters. Figure 2 shows graphs of the objective function 
and the magnitude of its gradient as functions of the number of iterations. 

In Table 111 are given some corresponding results for case (iii) with a starting guess for eddy 
viscosity of 002 at all levels. In this case it was found that the starting value of 0.05 did not 
converge, because during the early iterations the CONMIN subroutine produced intermediate 
estimates that contained negative values of eddy viscosity at some of the levels and the 

Table I. Values of @(a) for a sequence 
of decreasing values of u 

U 

1 0 - 3  
10-4 
10-5 
10-6 
10- 7 
10-8 
10-9 

@(a) 

0.25800 x lo-'  
0.27027 x 
0.27153 x 
0.27165 x 
0.27017 x lo-' 

-0.41540 x 
-0.36205 x 

Table 11. Estimated and true values of eddy viscosity for case (ii) and three different values of 
the tolerance 

Tolerance: 10-6 10-7 10-8 
True value of 

No. of iterations: 46 79 82 eddy viscosity 

Level 9.5 0.03558 0.03552 0.03553 0.03553 
Level 7.5 0.06692 0.06502 0.06500 0.06500 
Level 5.5 0.06696 0.06499 0.06500 0.06500 
Level 3.5 0.06103 0.06499 0.06500 0.06500 
Level 1.5 0.03 5 8 5 0.03 5 52 0.03553 0.03 5 5 3 

Objective function 0.399 x 0.143 x 0.268 x 



QUASI-3D NUMERICAL TIDAL AND STORM SURGE MODEL 305 

-2 

-3 
-4 
-5 

5 s  

I? -8 
3 -7 

H a .;: 
0 -11 
0 -12 1 -13 

9 -15 
-1 8 
-1 7 
-1 8 

r 

g -14 

I 
- 1 9 1 '  I " ' I ' I ' I ' I ' I ' I ' 

0 10 20 30 40 50 80 70 80 90 
Itoratlon 

-1 I 

0 10 20 30 40 50 80 70 80 90 
lteratlon 

Figure 2. Logarithms of the cost function and its gradient as functions of the number of iterations 

computation overflowed. This points to a general potential hazard in using an unconstrained 
minimization algorithm in a problem where the parameters are constrained by the physics to 
be positive. We have found that this difficulty can be avoided in all the cases tested by starting 
with an initial guess that is smaller than the true values, so that the overshoot of the early 
estimates is away from zero. 

Richardson and Panchang2' found that they could not obtain good estimates of eddy 
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Table 111. Estimated and true values of eddy viscosity for case (iii) and three different values of 
the tolerance 

Tolerance: 10-5 10-6 10-7 
True value of 

No. of iterations: 73 115 117 eddy viscosity 

Level 9.5 0.06760 0.07 5 8 8 0.07585 0.07585 
Level 7.5 0.03244 0.03000 0.03000 0.03000 
Level 5.5 0.0321 5 0.03000 0.03000 0.03000 
Level 3.5 0.026 12 0.03001 0.03000 0.03000 
Level 1.5 0.01723 0.01 690 0.0 1690 0.0 1690 

Objective function 0.132 x lo-' 0.349 x 0-164 x 

viscosity, except at lower levels of the water column, when wind forcing is absent. Their 
explanation for this is that when driven by tidal forcing alone, the vertical velocity profile is 
almost uniform throughout the water column except very near the bottom, so the eddy viscosity 
terms in the momentum equations are very small and the inverse problem becomes ill- 
conditioned. 

For this reason we have repeated the estimates of case (ii) in the case when the currents are 
driven by tidal forcing only. We found that good estimates are still obtained but more iterations 
are required. With a tolerance of convergence occurs in 65 iterations but the parameter 
estimates have errors of as much as 5%. With a tolerance of lo-* convergence occurs in 88 
iterations with a maximum error of 3%. With a tolerance of lop9 convergence occurs in 133 
iterations and the estimates are accurate to four significant figures. When the wind forcing was 
also present, this level of accuracy was achieved in 82 iterations at a tolerance of lo-' (see Table 
11). Thus, at least for the parameter values of this particular case, there is still enough vertical 
structure to allow estimates to be made from a tidal flow alone, though it is more expensive to 
do so. 

4.4. Tests with reduced data 

Next we examined the question of whether reliable estimates of eddy viscosity could be made 
with data from fewer than three current meters. For this purpose we used the values in case (ii) 
above. 

With two current meters (at levels 2 and 8) convergence occurs in 46 iterations when the 
tolerance is 10- but the estimates have errors of up to 7%. With a tolerance of lo-' convergence 
takes 87 iterations and the maximum error is less than 2%. In order to produce results 
accurate to four significant figures, a tolerance of 10- lo  is required and convergence takes 145 
iterations. Thus there is some deterioration in efficiency from Table 11, but good estimates are 
still obtained. 

For a single current meter (at level 5) some of the results are summarized in Table IV. Here 
the starting guess had to be reduced to N = 0.03 at all levels to avoid computational overflow 
caused by intermediate negative viscosities. The best estimates that could be obtained contain 
errors of up to about 2% and this was not improved by reducing the tolerance. This may be 
due to the limits of machine accuracy being exceeded. However, an error of this level would 
certainly be acceptable in most applications and our conclusion is that even velocity data from 
a single level are enough to provide practical estimates of viscosity. 

Secondly, the question arises as to whether data from fewer than the full 120 time steps 
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Table IV. Estimated and true values of eddy viscosity for case (ii) and two 
different values of the tolerance when data from a single level are assimilated 

~ ~~ 

Tolerance: 10-9 10-10  

True value of 
No. of iterations: 86 148 eddy viscosity 

Level 9.5 
Level 8.5 
Level 7.5 
Level 6.5 
Level 5.5 
Level 4.5 
Level 3.5 
Level 2.5 
Level 1.5 

Objective function 

0.03556 
0.05 182 
0.06359 
0.06469 
0.06571 
0.06593 
0.06235 
0.05296 
0.03529 

0.294 x 

0,03587 
0.0509 1 
0.064 19 
0-06547 
0.06507 
0.06604 
0.06250 
0.05272 
0.03521 

0.152 x 

0.03553 
0.05 105 
0.06500 
0.06500 
006500 
0.06500 
0*06500 
0.05 105 
0.03553 

would be adequate. The answer turns out to be very much in the affirmative. For example, if the 
computations of case (ii) are repeated but using only every tenth current data value (i.e. velocity 
measurements every hour), there is almost no deterioration from the results summarized in Table 
11. Convergence occurs in 46 iterations when the tolerance is lo-' but the estimates have errors 
of up to 7%. With a tolerance of lo-' convergence takes 79 iterations and the maximum error 
is & 1 in the fourth significant digit. Estimates accurate to four significant figures are produced 
in 81 iterations with a tolerance of lo-'. 

In fact, it is possible to reduce the amount of assimilated data much more than this and 
still obtain good parameter estimates. If data from only two time steps (spaced 6 h apart) 
are used, estimates that are accurate to four figures are obtained after 126 iterations with the 
tolerance set at lo-''. Using data from a single time step does not produce very accurate 
estimates, although even here the general trend of the eddy viscosity profile is obtained. 

These computations have been repeated for the case of two current meters at levels 2 and 8. 
In this case data from two time steps are not enough, the best estimates being obtained with a 
tolerance of 10- l 2  and having errors of over 10%. With data from three times spaced 4 h apart, 
estimates with errors of less than 2% are obtained after 90 iterations when the tolerance is lo-'' 
and estimates accurate to four digits are obtained in 141 iterations when the tolerance is lo-' ' .  

4.5. Estimations with a smoothing term 

In all the above studies the smoothing term was ignored by setting p = 0. As expected, the 
effect of giving p a positive value is to decrease the variability of the estimates, a large value of 
/? producing an almost constant eddy viscosity profile. Figure 3 shows graphs of the estimated 
profiles for different values of p in case (ii) above. In each case the tolerance was chosen so that 
the estimates had converged to four digits. For p = the estimate is close to that given in 
Table 11, whereas for /? = 10 the profile has become almost constant. 

4.6. The effect of noisy data 

In all the preceding examples we have used synthetic data computed by the same numerical 
model for which we seek to estimate the parameters. In a real application of the method the 
data to be assimilated would contain observational errors and, in addition, the numerical 
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Figure 3. Computed eddy viscosity profiles for different values of the weight /I. The solid line is the true profile; curve 
'a' corresponds to /I = 0, curve 'b' to /I = 0.0001, curve 'c' to /j = 0.1 and curve 'd' to /I = 10.0 

model would be only an approximation to the physical model. In such a situation the data to be 
assimilated are not exactly reproducible by the model; in other words the objective function 
cannot be reduced to zero. In order to simulate this situation, we have attempted to estimate 
the parameters after deliberately introducing some random errors into the data. To do this, we 
have replaced each observed value {Vg, Vg} by ((1 + prg)Ui, (1 + prd)Vi} ,  where r; is a uniform 
random number lying between - 1  and + l  and p is a factor determining the maximum 
percentage error. 

In this particular experiment we have worked with 14 vertical levels and tested the eddy 
viscosity profile of case (ii) above, i.e. N ,  = N ,  = 002 and N ,  = 0.065. The current meters were 
taken to be at the levels j = 2, 7 and 12 and data from all 120 steps were assimilated. It was 
found that when /? = 0, the estimated parameters showed wild fluctuations from one grid level 
to the next. The CONMIN subroutine had difficulty terminating at smaller tolerance levels, 
although the parameter estimates appeared to have stabilized. The NASH subroutine had no 
problem converging. Also, the final estimates vary considerably from one set of random 
perturbations to another, but they always show similar fluctuations about the true values. 
For this reason we do not present any results in tabular form. The results of one simulation 
from CONMIN are shown as the dashed curves in Figures 4-6. These figures correspond 
respectively to the three cases of 2%, 4% and 8% maximum error. 

It is clear from these results that even with a small error in the data it is essential to include 
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Figure 4. Computed eddy viscosity profiles for different values of the weight /I when the observed data contain 2% 
random errors. The solid line is the true profile; curve ‘a’ corresponds to /3 = 0, curve ‘b’ to b = 0~0001, curve ‘c’ to 

= 0.01 and curve ‘d’ to /3 = 10.0 
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Figure 5. Same as Figure 4 but with 4% random errors 
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Figure 6. Same as Figure 4 but with 8% random errors 

Table V. Estimates with 4% random error in the data for different values of the smoothing parameter /I. 
Upper values refer to the CONMIN and lower values to the NASH subroutine 

B :  0.0 0.000 1 0.0 1 10.0 True viscosity 

No. of iterations: 80 1 81 45 22 
212 210 68 32 

Level 14.5 0.02006 0.03094 0.03538 0.05634 0.0 303 5 

Level 12.5 0.03634 0.04897 0.04730 0.05692 0.05 105 

Level 10.5 0.11315 0.0662 1 0.06498 0.05799 0.06500 

Level 8.5 0.067 12 0.06624 0.06647 0.05745 0.06500 

Level 7.5 0.05557 0.06330 0.06589 0.05686 0.06500 

Level 5.5 0.04 1 74 0.06507 0.06307 0.05544 0.06500 

Level 3.5 0.07649 0.05220 0.05030 0.05437 0.05 105 

Level 1.5 0.02672 0.03021 0.03253 0.054 12 0.03035 

0.028 13 0.03093 0.03536 0.05634 

0.04507 0.04893 0.04732 0.05692 

0.06688 0.066 12 0.06499 0.05799 

0.072 16 0.06626 0.06646 0.05745 

0.06003 0.06332 0.06590 0.05686 

0.07225 0.06501 0.06307 0.05545 

0.04720 0.05214 0.05030 0.05438 

0.02996 0.03022 0.03254 0.054 13 

Objective function 0.288 x 0.288 x 0.316 x 0.188 x 
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a penalty term in the objective function to smooth the estimates. Table V shows the estimates 
obtained by the two subroutines for the case of 4% error when the penalty term is included. 
Values of p ranging between and 10 are considered. In each row the top value is the 
estimate obtained with the CONMIN subroutine and the bottom value is that obtained with 
the NASH subroutine. The number of iterations for CONMIN is shown to be 801 for /? = 0, 
which is the count after the programme was stopped mechanically. In this case the two 
subroutines converge to different estimates, but as p increases, the two estimates become 
identical. 

The results are shown graphically for all three percentages in Figures 4-6. Again a large value 
of p is seen to produce an almost constant function, but there are intermediate values of p which 
are sufficiently large to smooth out the fluctuations but not so large as to eliminate the essential 
structure of the viscosity profile. 

5. DISCUSSION 

In this paper we have examined the feasibility of estimating the vertical eddy viscosity profile 
by assimilating velocity data from one or more current meters located on the same vertical line. 
In the test problem considered, the data consisted of velocity values measured over a 12 h period 
at one, two or three levels at a point near the centre of a rectangular bay. Synthetic data were 
constructed from an exact numerical solution. Two packages have been used for the numerical 
optimization: the BFGS method contained in the CONMIN programme and Nash’s truncated 
Newton package. Both programmes performed equally successfully, though the NASH pro- 
gramme seems to work better in the presence of random errors in the data. This indicates that 
it may be more suitable when working with real data. 

The eddy viscosity was estimated in the presence of both tidal and wind forcing. In contrast 
with the results found by Richardson and P a n ~ h a n g , ~ ~  good estimates are obtained in the 
presence of tidal forcing alone, albeit at somewhat greater computational expense than when 
wind forcing is also present. We have obtained very accurate results when there were three data 
stations. Tests have shown that reliable estimates can be still be obtained with data from two 
current meters and even with a single meter estimates are found to be possible with errors of 
about 2%. Data from just two time steps spaced 6 h apart were found to be adequate to give 
good estimates when three current meters were used, while with two meters a minimum 
requirement is data from three time steps spaced 4 h apart. 

The influence of noisy data on the eddy viscosity estimation has been explored. In the presence 
of even a small percentage error the estimated values showed wild fluctuations from point to 
point. It has been found, however, that the inclusion of a smoothing term in the cost function 
in order to penalize such fluctuations, as suggested by Richardson and P a n ~ h a n g , ~ ~  leads to 
estimates that are reasonably smooth and still retain the essential structure of the true eddy 
viscosity functions. Some experimentation is necessary in each case to determine the best weight 
for such a penalty term. While in practice some judgement is needed in selecting this weight, 
the results indicate that the variational method offers a practically useful technique for estimating 
eddy viscosity from velocity data. 
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